Frank Beweeg oor die down driehoek onder die stem tel langs jou Q. Die instrument wenk sê: quotThis vraag geen navorsingspoging wys. quot. Gegewe dat iemand hier reeds 'n baie soortgelyke Q hier wat maklik kon gevind word via 'n soektog het gevra, en 'n Google soektog neem jy die korrekte antwoord, kan dit wees waarom jy Downvotes het en het jou Q gesluit. â € Gavin Simpson 12 Junie 12 by 07:38 Lyk soos jy reeds weet hoe om dit te bereken, hoef net 'n struikel in die regte rigting om dit te implementeer. Sedert R is vectorized, dit is eenvoudig: Die met bietjie net spaar op tik en is gelykstaande aan som (zcountzsize) / som (zcount) Of gebruik die ingeboude funksie weighted. mean () as jy ook daarop gewys. Gebruik jou eie funksie kan vinniger te bewys, maar sal dieselfde hoeveelheid foutkontroles wat die ingeboude funksie nie te doen nie. antwoord 12 Junie 12 aan 00:18 Jou Antwoord 2016 stapel Exchange, IncWhat039s die verskil tussen bewegende gemiddelde en geweegde bewegende gemiddelde A 5-tydperk bewegende gemiddelde, gebaseer op die bogenoemde, sal bereken word deur die volgende formule pryse: Gebaseer op die vergelyking hierbo die gemiddelde prys oor die bogenoemde tydperk was 90,66. Die gebruik van bewegende gemiddeldes is 'n effektiewe metode vir die uitskakeling van sterk prysskommelings. Die sleutel beperking is dat datapunte vanaf ouer data nie anders word geweeg as datapunte naby die begin van die datastel. Dit is hier waar geweegde bewegende gemiddeldes 'n rol speel. Geweegde gemiddeldes toewys 'n swaarder gewig meer huidige data punte omdat hulle meer relevant as datapunte in die verre verlede. Die som van die gewig moet optel tot 1 (of 100). In die geval van die eenvoudige bewegende gemiddelde, is die gewigte eweredig versprei, wat is die rede waarom hulle nie in die tabel hierbo getoon. Sluitingsprys van AAPL Die geweegde gemiddelde is bereken deur vermenigvuldig die gegewe prys deur sy verwante gewig en dan die WHALM waardes. In die voorbeeld hierbo, sal die geweegde 5-daagse bewegende gemiddelde 90,62. In hierdie voorbeeld is die onlangse data punt die hoogste gewig uit 'n arbitrêre 15 punte. Jy kan die waardes weeg uit enige waarde goeddink jou. Die laer waarde van die geweegde gemiddelde persentasie van relatief tot die eenvoudige gemiddelde dui die onlangse verkoop druk kan meer betekenisvol as 'n paar handelaars verwag word. Vir die meeste handelaars, die gewildste keuse by die gebruik van geweeg bewegende gemiddeldes is om 'n hoër gewig gebruik vir die afgelope waardes. (Vir meer inligting, kyk na die bewegende gemiddelde Tutoriaal) Lees meer oor die verskil tussen eksponensiële bewegende gemiddeldes en geweegde bewegende gemiddeldes, twee glad aanwysers dat. Lees Antwoord Die enigste verskil tussen hierdie twee tipes bewegende gemiddelde is die sensitiwiteit elkeen toon veranderinge in die gebruik van data. Lees Antwoord Sien waarom bewegende gemiddeldes het bewys voordelig vir handelaars en ontleders en nuttig te wees wanneer dit toegepas word om die prys kaarte en. Lees Antwoord Leer hoe handelaars en beleggers gebruik geweegde Alpha om momentum van 'n aandele prys te identifiseer en of pryse hoër sal beweeg. Lees Antwoord Hier is die mees algemene gekies tydperke gebruik deur handelaars en markanaliste in die skep van bewegende gemiddeldes te trek as tegniese. Lees Antwoord verstaan hoe om die gewigte van die verskil koste van kapitaal en hoe hierdie berekening word gebruik om te bepaal bereken. Lees Beantwoord Geweegde bewegende gemiddeldes: Die Basics Oor die jare, het tegnici twee probleme met die eenvoudige bewegende gemiddelde gevind. Die eerste probleem lê in die tyd van die bewegende gemiddelde (MA). Die meeste tegniese ontleders glo dat die prys aksie. die opening of sluiting voorraad prys, is nie genoeg om op te hang vir goed voorspel koop of te verkoop seine van die MA crossover aksie. Om hierdie probleem op te los, het ontleders nou meer gewig toeken aan die mees onlangse prys data deur gebruik te maak van die eksponensieel stryk bewegende gemiddelde (EMA). (Meer inligting in die ondersoek van die eksponensieel geweeg bewegende gemiddelde.) 'N voorbeeld Byvoorbeeld, met behulp van 'n 10-dag MA, sou 'n ontleder die sluitingsprys van die 10de dag te neem en vermeerder hierdie getal deur 10, die negende dag van nege, die agtste van dag tot agt en so aan tot die eerste van die MA. Sodra die totale bepaal, sou die ontleder dan verdeel die aantal deur die byvoeging van die vermenigvuldigers. As jy die vermenigvuldigers van die 10-dag MA voorbeeld te voeg, die getal is 55. Hierdie aanwyser is bekend as die lineêr geweeg bewegende gemiddelde. (Vir verwante leesstof, check Eenvoudige bewegende gemiddeldes Maak Trends uitstaan.) Baie tegnici is ferm gelowiges in die eksponensieel stryk bewegende gemiddelde (EMA). Hierdie aanwyser is verduidelik in so baie verskillende maniere waarop dit verwar studente en beleggers sowel. Miskien is die beste verduideliking kom van John J. Murphy tegniese ontleding van die finansiële markte, (uitgegee deur die New York Instituut van Finansies, 1999): Die eksponensieel stryk bewegende gemiddelde adresse beide van die probleme wat verband hou met die eenvoudige bewegende gemiddelde. Eerstens, die eksponensieel stryk gemiddelde ken 'n groter gewig aan die meer onlangse data. Daarom is dit 'n geweegde bewegende gemiddelde. Maar terwyl dit ken mindere belang vir verlede prys data, beteken dit sluit in die berekening al die data in die lewe van die instrument. Daarbenewens het die gebruiker in staat is om die gewig te pas by mindere of meerdere gewig te gee aan die mees onlangse dae prys, wat by 'n persentasie van die vorige dae waarde. Die som van beide persentasie waardes voeg tot 100. Byvoorbeeld, die laaste dae die prys kan 'n gewig van 10 (0,10), wat by die vorige dae gewig van 90 (0,90) opgedra. Dit gee die laaste dag 10 van die totale gewig. Dit sou die ekwivalent van 'n 20-dag gemiddeld deur die laaste dae die prys 'n kleiner waarde van 5 (0,05) wees. Figuur 1: eksponensieel stryk bewegende gemiddelde Bogenoemde grafiek toon die Nasdaq saamgestelde indeks van die eerste week in Augustus 2000 tot 1 Junie 2001 As jy duidelik kan sien, die EMO, wat in hierdie geval is die gebruik van die sluitingsprys data oor 'n tydperk van nege dae, het definitiewe verkoop seine op die 8 September (gekenmerk deur 'n swart afpyltjie). Dit was die dag toe die indeks het onder die vlak 4000. Die tweede swart pyl toon 'n ander af been wat tegnici eintlik verwag het nie. Die Nasdaq kon genoeg volume en belangstelling van die kleinhandel beleggers na die 3000 merk breek nie genereer. Dit dan duif weer af na onder uit by 1619,58 op April 4. Die uptrend van 12 April is gekenmerk deur 'n pyl. Hier is die indeks gesluit 1,961.46, en tegnici begin institusionele fondsbestuurders begin om af te haal 'n paar winskopies soos Cisco, Microsoft en 'n paar van die energie-verwante kwessies te sien. (Lees ons verwante artikels: Moving Gemiddelde Koeverte: Verfyning 'n gewilde Trading Tool en bewegende gemiddelde Bounce.) QuotHINTquot is 'n akroniem wat staan vir vir quothigh inkomste nie taxes. quot Dit is van toepassing op 'n hoë-verdieners wat verhoed dat die betaling federale inkomste. 'N Mark outeur wat koop en verkoop baie kort termyn korporatiewe effekte genoem kommersiële papier. 'N papier handelaar is tipies. 'N bestelling geplaas met 'n makelaar om 'n sekere aantal aandele te koop of te verkoop teen 'n bepaalde prys of beter. Die onbeperkte koop en verkoop van goedere en dienste tussen lande sonder die oplegging van beperkings soos. In die sakewêreld, 'n buffel is 'n maatskappy, gewoonlik 'n aanloop wat nie 'n gevestigde prestasie rekord. 'N Bedrag n huiseienaar moet betaal voordat versekering sal die skade wat veroorsaak word deur 'n hurricane. Moving gemiddeldes in R Na die beste van my wete te dek, het R nie 'n ingeboude funksie om bewegende gemiddeldes te bereken. Die gebruik van die filter funksie, maar ons kan 'n kort funksie te skryf vir bewegende gemiddeldes: Ons kan dan gebruik maak van die funksie op enige data: MAV (data), of MAV (data, 11) as ons wil 'n verskillende aantal datapunte spesifiseer as die standaard 5 plot werke soos verwag: plot (MAV (data)). Benewens die aantal datapunte waaroor om gemiddelde, kan ons ook die kante argument van die filter funksies te verander: sides2 gebruik beide kante, sides1 gebruik net verlede waardes. Deel hierdie: Post navigasie Kommentaar navigasie Kommentaar navigationMoving gemiddeldes bewegende gemiddeldes Met konvensionele datastelle die gemiddelde waarde is dikwels die eerste, en een van die mees bruikbare, opsommingstatistiek te bereken. Wanneer data in die vorm van 'n tydreeks, die reeks beteken is 'n nuttige maatstaf, maar nie die dinamiese aard van die data weerspieël. Gemiddelde waardes bereken oor kortsluiting periodes, hetsy voor die huidige tydperk of gesentreer op die huidige tydperk, is dikwels meer nuttig. Omdat so 'n gemiddelde waardes sal wissel, of beweeg, soos die huidige tydperk beweeg van tyd t 2, t 3. ens staan hulle bekend as bewegende gemiddeldes (Mas). 'N Eenvoudige bewegende gemiddelde is (tipies) die ongeweegde gemiddelde van k voor waardes. 'N eksponensieel geweeg bewegende gemiddelde is in wese dieselfde as 'n eenvoudige bewegende gemiddelde, maar met bydraes tot die gemiddelde geweegde deur hul nabyheid aan die huidige tyd. Want daar is nie een nie, maar 'n hele reeks bewegende gemiddeldes vir enige gegewe reeks, die stel van Mas kan hulself getrek word op grafieke, ontleed as 'n reeks, en gebruik in die modellering en voorspelling. 'N verskeidenheid van modelle kan gebou word met behulp van bewegende gemiddeldes, en dit is bekend as MA modelle. As sulke modelle word gekombineer met outoregressiewe (AR) modelle die gevolglike saamgestelde modelle is bekend as ARMA of ARIMA modelle (die Ek is vir geïntegreerde). Eenvoudige bewegende gemiddeldes Sedert 'n tydreeks kan as 'n stel waardes beskou word,, t 1,2,3,4, N die gemiddeld van hierdie waardes kan bereken word. As ons aanvaar dat N is nogal groot, en ons kies 'n heelgetal k wat is veel kleiner as n. kan ons 'n stel van blok gemiddeldes, of eenvoudig bewegende gemiddeldes (van orde k) bereken: Elke maat verteenwoordig die gemiddelde van al die datawaardes oor 'n interval van k waarnemings. Let daarop dat die eerste moontlike MA van orde k gt0 is dat vir t k. Meer in die algemeen kan ons die ekstra onderskrif val in die uitdrukkings bo en skryf: Dit bepaal dat die geskatte gemiddelde op tydstip t is die eenvoudige gemiddelde van die waargeneem waarde op tydstip t en die voorafgaande k -1 tyd stappe. As gewigte word toegepas wat die bydrae van waarnemings wat verder weg in die tyd is verminder, is die bewegende gemiddelde gesê eksponensieel word stryk. Bewegende gemiddeldes word dikwels gebruik as 'n vorm van vooruitskatting, waardeur die beraamde waarde vir 'n reeks op tydstip t 1, S T1. geneem word as die MA vir die tydperk tot en met tyd t. bv vandag se skatting is gebaseer op 'n gemiddelde van vorige aangeteken waardes tot en met gister se (vir daaglikse data). Eenvoudige bewegende gemiddeldes kan gesien word as 'n vorm van gladstryking. In die onderstaande diagram getoon word byvoorbeeld het die lugbesoedeling dataset getoon in die inleiding tot hierdie onderwerp is aangevul deur 'n 7-daagse bewegende gemiddelde (MA) reël, hier in rooi. Soos gesien kan word, die MA lyn glad uit die pieke en trôe in die data en kan baie nuttig wees in die identifisering van tendense wees. Die standaard toekomsgerigte berekening formule beteken dat die eerste k -1 datapunte het geen MA waarde, maar daarna berekeninge uit te brei na die finale data punt in die reeks. PM10 daaglikse gemiddelde waardes, Greenwich bron: London Luggehalte Network, www. londonair. org. uk Een rede vir die berekening van eenvoudige bewegende gemiddeldes op die voorgeskrewe wyse, is dat dit in staat stel om waardes te bereken vir alle tydgleuwe van tyd tk tot op hede en as 'n nuwe meting verkry vir tyd t 1, die MA vir tyd t 1 kan die reeds bereken stel bygevoeg. Dit bied 'n eenvoudige prosedure vir 'n dinamiese datastelle. Daar is egter 'n paar probleme met hierdie benadering. Dit is redelik om te argumenteer dat die gemiddelde waarde van die afgelope 3 periodes, sê, moet geleë wees op tyd t -1, nie tyd t. en vir 'n MA oor 'n gelyke getal periodes miskien is dit moet geleë wees by die middelpunt tussen twee tyd intervalle. 'N oplossing vir hierdie probleem is om gesentreer MA berekeninge, waarin die MA op tydstip t is die gemiddeld van 'n simmetriese stel waardes rondom t gebruik. Ten spyte van die ooglopende meriete, is hierdie benadering nie oor die algemeen gebruik word, want dit vereis dat data is beskikbaar vir toekomstige gebeure, wat nie die geval mag wees. In gevalle waar analise is geheel en al van 'n bestaande reeks, kan die gebruik van gesentreer Mas beter wees. Eenvoudige bewegende gemiddeldes kan beskou word as 'n vorm van gladstryking, die verwydering van 'n paar hoë frekwensie komponente van 'n tydreeks en beklemtoon (maar nie die verwydering van) tendense in 'n soortgelyke wyse as die algemene opvatting van digitale filter. Inderdaad, bewegende gemiddeldes is 'n vorm van lineêre filter. Dit is moontlik om 'n bewegende gemiddelde berekening van toepassing op 'n reeks wat reeds stryk, dit wil sê glad of filter 'n reeds stryk reeks. Byvoorbeeld, met 'n bewegende gemiddelde van orde 2, ons kan dit beskou as synde bereken met behulp van gewigte, sodat die MA by x 2 0.5 x 1 0.5 x 2. Net so, die MA by x 3 0.5 x 2 0.5 x 3. As ons dien 'n tweede vlak van gladstryking of filter, ons het 0,5 x 2 0.5 x 3 0.5 (0.5 x 1 0.5 x 2) 0.5 (0.5 x 2 0.5 x 3) 0.25 x 1 0.5 x 2 0,25 x 3 dws die 2-stadium filter proses (of konvolusie) het 'n wisselvallig geweegde simmetriese bewegende gemiddelde, met gewigte vervaardig. Veelvuldige konvolusie kan ingewikkeld geweegde bewegende gemiddeldes, waarvan sommige is gevind veral gebruik in gespesialiseerde velde, soos in lewensversekering berekeninge te produseer. Bewegende gemiddeldes gebruik kan word om periodieke effekte verwyder indien bereken met die lengte van die periodisiteit as 'n bekende. Byvoorbeeld, met 'n maandelikse data seisoenale variasies dikwels verwyder kan word (indien dit die doel) deur toe te pas 'n simmetriese 12 maande bewegende gemiddelde met al maande gelyke gewigte, behalwe die eerste en laaste wat geweeg deur 1/2. Dit is omdat daar sal 13 maande in die simmetriese model (huidige tyd, t / -. 6 maande). Die totale is gedeel deur 12. Soortgelyke prosedures kan vir enige goed gedefinieerde periodisiteit word aangeneem. Eksponensieel geweeg bewegende gemiddeldes (EWMA) Met die eenvoudige bewegende gemiddelde formule: alle waarnemings is ewe geweegde. As ons noem hulle die gelyke gewigte, Alpha t. elk van die k gewigte sou gelyk 1 / k. sodat die som van die gewigte sal wees 1, en die formule sou wees: Ons het reeds gesien dat verskeie programme van hierdie proses lei tot die gewigte wissel. Met eksponensieel geweeg bewegende gemiddeldes die bydrae tot die gemiddelde waarde van waarnemings wat meer verwyder betyds beraadslaag verminder, en sodoende meer onlangse (plaaslike) gebeure beklemtoon. In wese 'n glad parameter, 0lt Alpha LT1, is bekend gestel, en die formule hersien om 'n simmetriese weergawe van hierdie formule van die vorm sal wees: As die gewigte in die simmetriese model is gekies as die terme van die bepalings van die binomiale uitbreiding, (1/21/2) 2S. hulle sal vat om 1, en as Q groot word, sal die normaalverdeling benader. Dit is 'n vorm van kern gewig, met die Binomiale optree as die kern funksie. Die twee stadium konvolusie in die vorige subartikel beskryf is juis hierdie reëling, met Q 1, opbrengs die gewigte. In eksponensiële gladstryking is dit nodig om 'n stel gewigte gebruik wat som tot 1 en wat verminder in grootte meetkundig. Die gewigte gebruik is tipies van die vorm: Om te wys dat hierdie gewigte op te som tot 1, oorweeg die uitbreiding van 1 / as 'n reeks. Ons kan skryf en die uitdrukking in hakies gebruik te maak van die binomiale formule (1- x) p brei. waar x (1-) en p -1, wat gee: Dit bied dan 'n vorm van geweegde bewegende gemiddelde van die vorm: Hierdie opsomming kan geskryf word as 'n herhaling verhouding: wat berekening grootliks vereenvoudig, en vermy die probleem wat die gewig regime moet streng oneindige wees vir die gewigte op te som tot 1 (vir klein waardes van alfa. hierdie is tipies nie die geval). Die notasie wat gebruik word deur verskillende skrywers wissel. Sommige gebruik die letter S aan te dui dat die formule is in wese 'n reëlmatige veranderlike, en skryf: terwyl die beheerteorie literatuur gebruik dikwels Z eerder as S vir die eksponensieel geweeg of glad waardes (sien, byvoorbeeld, Lucas en Saccucci, 1990, LUC1 , en die NIST webwerf vir meer besonderhede en uitgewerkte voorbeelde). Bogenoemde aangehaal formules uit die werk van Roberts (1959 ROB1), maar Hunter (1986, HUN1) gebruik 'n uitdrukking van die vorm: wat meer geskik is vir gebruik in 'n paar prosedures kan wees. Met alfa 1 die gemiddelde skatting is eenvoudig sy gemeet waarde (of die waarde van die vorige data-item). Met 0,5 die skatting is die eenvoudige bewegende gemiddelde van die huidige en vorige metings. In voorspellingsmodelle die waarde, S t. word dikwels gebruik as die skatting of voorspelling waarde vir die volgende tydperk, dit wil sê as die skatting vir x op tydstip t 1. So ons het: Dit dui aan dat die voorspelling waarde op tydstip t 1 is 'n kombinasie van die vorige eksponensieel geweeg bewegende gemiddelde plus 'n komponent wat die geweegde voorspelling fout, Epsilon verteenwoordig. op tyd t. Die aanvaarding van 'n tydreeks gegee en 'n voorspelling is nodig, word 'n waarde vir Alpha vereis. Dit kan geskat word van die bestaande data deur die evaluering van die som van 'n vierkant voorspelling foute te kry met wisselende waardes van Alpha vir elke T 2,3. die opstel van die eerste skatting van die eerste waargenome data waarde wees, x 1. In beheer aansoeke ter waarde van Alpha is belangrik in wat gebruik word in die bepaling van die boonste en onderste beheer perke, en raak die gemiddelde duur lank (ARL) verwag voor hierdie beheer perke is gebreek (onder die aanname dat die tyd reeks verteenwoordig 'n stel van ewekansige, identies verdeelde onafhanklike veranderlikes met 'n gemeenskaplike variansie). Onder hierdie omstandighede die variansie van die beheer statistiek: is (Lucas en Saccucci, 1990): beheer perke word gewoonlik gestel as vaste veelvoude van hierdie asimptotiese variansie, bv / - 3 keer die standaardafwyking. 1,134 en die proses sal een of ander perk in 500 bereik - As alfa 0,25, byvoorbeeld, en die data wat gemonitor word aangeneem dat 'n normale verspreiding, N (0,1) het, terwyl dit in beheer, die beheer perke sal / kan stappe op die gemiddelde. Lucas en Saccucci (1990 LUC1) lei die ARLs vir 'n wye verskeidenheid van alfa waardes en onder verskillende aannames met behulp van Markov Chain prosedures. Hulle tabuleer die resultate, insluitend die verskaffing van ARLs wanneer die gemiddelde van die beheerproses is verskuif deur sommige verskeie van die standaardafwyking. Byvoorbeeld, met 'n 0.5 verskuiwing met alfa 0,25 die ARL is minder as 50 keer stappe. Die hierbo beskryf benaderings staan bekend as een eksponensiële gladstryking. as die prosedures wat eenmaal aan die tydreeks toegepas en dan ontleed of beheer prosesse uit op die gevolglike stryk dataset gedra. As die dataset sluit 'n tendens en / of seisoenale komponente, twee - of drie-fase eksponensiële gladstryking kan hieronder toegedien word as 'n middel van die verwydering (uitdruklik modellering) hierdie effekte (sien verder, die afdeling oor vooruitskatting., En die NIST uitgewerkte voorbeeld ). CHA1 Chat Field C (1975) die ontleding van Times Reeks: teorie en praktyk. Chapman en Hall, Londen HUN1 Hunter J S (1986) Die eksponensieel geweeg bewegende gemiddelde. J van kwaliteit Tegnologie, 18, 203-210 LUC1 Lucas J M, Saccucci M S (1990) eksponensieel Geweegde Moving Gemiddelde beheer Skemas: Properties en verbeteringe. Technometrics, 32 (1), 1-12 ROB1 Roberts S W (1959) beheer Chart Toetse Op grond van Meetkundige bewegende gemiddeldes. Technometrics, 1, 239-250
No comments:
Post a Comment